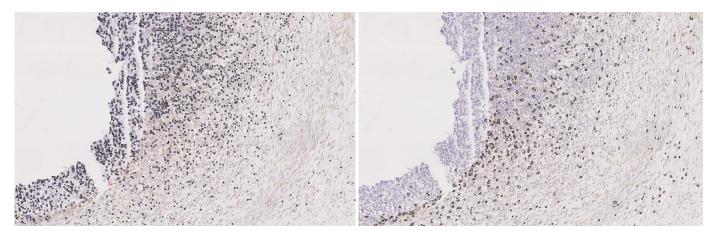


Cell Counter L*a*b* 2 automates cell detection and counting for 2 different cell populations with blue and brown immunohistochemical staining in multiple RGB color TIF files. For each image, single-cell nuclei for each population are detected by color thresholding using the L*a*b* color space and particle analysis. Parameters are best extracted from FIJI pre-analysis.

Step 1

Detect Blue cells

- 1. Select the Test file (crop the original image to a smaller area in FIJI if necessary)
- Set Blue color range (MIN and MAX for L* luminosity, a* red-green and b* blue-yellow axis) using Auto
 or manually adjusting values. Use Check to view segmentation results. Compare with Original.
- 3. Set Blue Min and Max Size (pixels) use FIJI for cell area measurement in pixels


-	Cell_Count	ter_Lab_2				- 🗆 X					
Cell Counter L*a*b* 2											
	Save		Click here	est File							
	Load	Blue			Brown						
		MIN	MAX		MIN	MAX					
		0	▶ 100 ▶	L*	0	▶ 100					
	2	-128	▶ 127	a*	-128	▶ 127					
		-128	▶ 127	b*	-128	▶ 127					
		Auto	Check	Original	Auto	Check					
3	Blue Min	Size (pixels)	100	Brown	n Min Size (pi	ixels) 100					
-	Blue Max	Size (pixels)	300	Brown	Max Size (p	ixels) 300					
						Test					
		Click here to	select Folde	۲	GO!	GO AUTO					

Step 2 Detect Brown Cells

- Set Brown color range (MIN and MAX for L* luminosity, a* red-green and b* blue-yellow axis) using Auto or manually adjusting values. Use Check to view segmentation results. Compare with Original.
- 5. Set Brown Min and Max Size (pixels) use FIJI for cell area measurement in pixels

Cell_Counter_Lab_2			_		\times						
Cell Counter L*a*b* 2											
Save	Click here to	ere to select Test File									
8 Load Blu	le	Brown									
MIN	MAX	MIN		MAX							
	▶ 100 ▶	L*		100							
-128	▶ 127 ▶	a* -128		127	4						
-128	▶ 127	b* -128		127							
Auto	Check	priginal /	Auto	ck							
Blue Min Size (pixels)	100	Brown Min S	ize (pixels) 100	6						
Blue Max Size (pixels)	300	Brown Max S	lize (pixels	;) 300							
			10	Test	6						
9 Click here t	o select Folder		GO!	GO AU	ro 🦿						

- 6. Press Test
- 7. (Optional) Save processing parameters in an Excel file to be reused later.

1 - Positive Cells with blue staining (left) and brown staining (right) outlined in black

Step 3 Process Folder

- 8. (Optional) Load processing parameters from Excel file
- 9. Select Folder with RGB color TIF files to be processed
- 10. Press GO!

RGB color TIF files in the folder will be processed. An Excel file named Cell_Counter_Lab_2_results.xls and individual JPG files with outlined positive cells will be created.

★ (Optional) Press GO AUTO

RGB color TIF files in the folder will be processed with automatically determined Blue and Brown color thresholds. An Excel file named Cell_Counter_Lab_2_results.xls and individual JPG files with outlined positive cells will be created.

NOTE High DPI scaling issue

If the graphical user interface (GUI) is not displayed as depicted in this Quick User Guide, you may need to override High DPI scaling in your Windows computer. To do so, right-click the Cell_Counter_Lab_2 shortcut and select Properties. Click on the Compatibility tab and under Settings, select Change high DPI settings. In the High DPI scaling override section, select "Override high DPI scaling behavior. Scaling performed by:" and select System (Enhanced).

HELP For support, please contact joserino@medicina.ulisboa.pt